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Linear	Model	
	

• “Conventional”	Linear	Model	

(LM)						
 

Y = Xβ + e; Y& e ∼ n ×1, X ∼ n × r, β ∼ r ×1
E ei( ) = 0, ei  independent, var ei( ) =σ 2 (unknown)

	.	
	

• Variable	selection:	
	 	 Choose	a	subset	of	variables=columns	of	X	=	X[p].	
	 	 Reanalyze	via	Least	Squares	using	X[p]	under	(LM).		
	 	 Get	 β̂[ p]		and	Ŷ[ p] = X[ p]β̂[ p].	
	

• Cp	is	a	numerical	measure	often	used	to	choose	a	good	
subset	of	variables.		

Here	X	is	a	matrix	of	constants	(not	random).	The	first	column	of	X	is	1.	So,	
ordinary	regression	is	p=2.	
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Cp	
	

Mallows	version	for	a	sub-model	of	size	p	is	
	 Cp = SSE[ p] σ̂ r

2( )− n + 2p .	
Note	that	σ̂ r

2 	comes	from	the	full	model.		
	
This	is	used	to	compare	the	suitability	of	various	sub-
models.		
One	can	use	either	an	all	subsets	approach	or	a	stepwise	
approach	(just	forward,	or	forward	and	backward,	etc.).	
	
	
Mallows	(1964,	1966,	oral	presentations;	1973	Technometrics)	
Gorman	and	Toman	(1966,	Technometrics)	
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Example:	Polynomial	Regression	
Cholesterol	data	from	Efron&Feldman	(1991),	Efron	(2013,	JASA)).	

	
Y	is	improvement	in	cholesterol	level	over	duration	of	study	
X	is	a	measure	of	compliance	during	study	(normalized	to	approx.	normal)	
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Stepwise	Regression	
Entered	in	order	of	degree	of	polynomial	[Notation:X^k = X − X( )k ]		

		
Parameter "Sig 

Prob" 
RSquare Cp p AICc BIC 

X  0.0000 0.4853 3.137 2 1477.3 1486.5 
X^2 0.1988 0.4905 3.467 3 1477.7 1489.9 
X^3 0.0816 0.5001 2.427 4 1476.7 1491.8 
X^4 0.7572 0.5004 4.331 5 1478.7 1496.8 
X^5 0.2654 0.5043 5.089 6 1479.7 1500.7 
X^6 0.7656 0.5046 7 7 1481.8 1505.7 
	

Cp	suggests	that	the	cubic	model	is	best.	
	
Note	that	all-subsets	chooses	linear	and	cubic;	no	quadratic	term.	
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Alternate,	equivalent	form	of	Cp	
Recall,	
	 Cp = SSE[ p] σ̂ r

2( )− n + 2p .		
A	more	convenient	form	moving	forward	is	

	 Cp
U = σ̂ r

2

n
Cp + n( ) = SSE[ p]n

+ 2p σ̂ r
2

n
.		

Both	select	the	same	models.	
	
Cp	has	a	nice	self-normalizing	property:	C[r ] = r .	
But	Cp

U 		has	an	unbiasedness	property	that	resonates	well	later.	
Continue	to	note	that	σ̂ r

2 	is	derived	from	full	model	residuals.		
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Example:	Variable	Selection	
PROSTATE	data	from	Tibshirani	(1996,	JRSS-B),		
Data	adapted	from	Stamey,	et.al	(1989)	
	
• Response	is	Y	=	“lcavol”	(=log	CancerVolume)	

There	are	8	potential	explanatory	variables.	n	=	97	
• We	used	all-subsets	with	Cp

U .	But	I’ll	display	as	a	step-	
wise	table.	In	this	example	step-wise	and	all-subsets	yielded	the	same	
models.		
	
Note:	I	switched	variables	from	the	analysis	in	Tibshirani	(1996);	he	used	
Y=lpsa	and	lcavol	was	one	of	the	potential	covariates.	We	use	full	data	set;	
Tibshirani	(1996)	splits	the	data	and	uses	only	n	=	71.	
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Step-wise	Table	
  Parameter "Sig 

Prob" 
Seq SS RSquare Cp Cp

U AICc 

 constant 0.000 176.785  176.84 1.977 310.3 
 lpsa 0.000 71.938 0.539 32.20 0.643 237.2 
 lcp 0.000 14.143 0.646 5.37 0.508 214.0 
 age 0.151 1.040 0.653 5.25 0.507 214.1 
 lbph 0.098 1.359 0.664 4.48 0.503 213.4 
 pgg45 0.283 0.567 0.667 5.32 0.507 214.5 
 gleason 0.162 0.957 0.675 5.37 0.508 214.8 
 svi 0.549 0.175 0.676 7.01 0.516 216.8 
 lweight 0.903 0.007 0.676 9.00 0.526 219.3 

	

• Cp	chooses	a	4-factor	model	(same	via	step-wise,	as	above,	or	via	all	
subsets)	

• I’ll	later	return	to	this	example.	
	
[NOTE:	I	included	the	“constant”	as	a	possible	model.	This	corresponds	to	
the	model	Y = β1.	This	is	not	traditional	in	such	a	table.]		 	
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Estimation	of	Predictive	Risk	
• The	core	concept	within	Mallows	method		

	
Mallows	noted:		
• Cp	is	a	[normalized]	estimate	of	[excess]	predictive	risk		
	
and	also	explicitly	assumed	
	
• The	x’s	are	taken	to	be	from	a	fixed	design,	not	from	a	
random	sample.	
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Details:	
• Consider	X,	fixed,	with	linear	estimator	Ŷ = Xβ̂ 	and	a	
new	(vector)	observation	Y∗ = Xβ + e∗.			

• The	Total	predictive	Risk	across	the	design	is	

	
 
TR X ! E Y −Xβ̂

2⎛
⎝

⎞
⎠ .		

The	average,	per-coordinate,	is	R X = n−1TR X .	
• THEN,	as	implicit	in	Mallows,	

(U)	 E Cp
U( ) = R X .				[Exact	unbiasedness]	

• Mallows	has	
(M)	 Cp ≈ TR X − nσ

2( ) σ 2 = Excess total pred risk( ) σ 2 .	
See	Gilmour	(1996,	JRSS-D)	for	a	slight	modification.	
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• Because	of	(M)		
Many	statisticians	and	statistical	textbooks	

believe/claim	that	
	

“Cp	is	a	suitable	estimate	of	predictive	risk.”	!!!	
	

BUT	
	

That’s	not	true!	
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• Here’s	why	it’s	not	true...	(one	reason)	
• The	predictive	goal	is	to	predict	(squared-error)	risk	
for	an	individual	who	is	not	in	the	statistical	sample.	

• This	is	(with	X∗,Y ∗	denoting	the	new	measurements)		

(predRisk)	
 
R
X[ p ]
∗ ! E Y ∗ − X[ p]

∗T β̂( )2{ }	.	
• This	is	not	the	same	as		

(Mallows)	
 
R
X[ p ]=Χ

! n−1E Y − Χβ̂
2
X[ p] = Χ⎛

⎝⎜
⎞
⎠⎟ ,	

which	is	the	target	of	Cp
U .	

• Why	are	these	two	different?	Synopsis	follows.	&	see	
“Models as Approximations -- A Conspiracy of Random Regressors and 
Model Deviations Against Classical Inference in Regression” WLMRG,  
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Estimating	the	Predictive	Risk,	R	
Preamble:		
• Cp	assumes	a	well-specified	linear	model	with	fixed	
regressors,	X	and	homoscedasticity	of	residuals.		

• The	following	is	for	random	regressors;	it	estimates	
predictive	risk	of	linear	estimators	in	such	a	setting.	

• In	addition,	the	following	does	not	assume	a	well-
specified	linear	model	or	homoscedasticity.	INSTEAD	

• It	holds	in	the	“assumption	lean”	framework	–	(see	next	
slide).	

• There	is	a	small	price	relative	to	what	one	gets	with	Cp:		
• The	new	estimator	of	risk	is	only	an	asymptotically	
unbiased	estimator	of	its	target.	
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Assumption	Lean	Linear	Regression	
• Observe	iid	Sample	 Xi ,Yi{ }	with	Xi ∈ℜ

r ,	 X,Y ∼ F .		
• No	assumptions	about	F,	other	than	existence	of	low	order	moments.	
• Contemplate	a	future	observation	 X

∗, Y ∗ ∼ F 	and	
• Construct	best	bi-linear	predictor	to	minimize	
predictive	risk,	R.	[Predictor	of	the	form	 X∗T !β 	with	 !β 	linear	in	Y.]	

• This	is	X∗Tβ̂ 	with	β̂ 	the	usual	LS	estimator.	
• Notation:	The	target/oracle	predictor	is	X∗Tβ 		
with	β 	being	the	population	LS	parameter:	

	
β = argminb EF Y − X Tb( )2{ }⇔

β = E XX T( )⎡⎣ ⎤⎦
−1
E XY( ).
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Estimate	of	R Γ[ ];	Definition		
• For	a	submodel,	Γ ,	compute	the	sample	LS	residuals	

ρ̂[Γ ]i = Yi − ′X[Γ ]iβ̂[Γ ],	i = 1,..,n.	
• Then	compute	the	matrices	

	 M̂[Γ ] = n
−1 ′X[Γ ]X[Γ ] and Ŵ[Γ ] = n

−1 X[Γ ]i ′X[Γ ]iρ̂[Γ ]i
2

i=1

n

∑ .	

• Estimate	of	R[Γ ],	the	predictive	risk	for	sub-model	Γ 	is	

	
Cp

⊕ = n−1 Y −X Γ[ ]β̂ Γ[ ]
2
+ 2n−1tr M̂ Γ[ ]

−1 Ŵ Γ[ ]( )
= n−1SSE[Γ ] + 2n−1ς̂ [Γ ]

2    (See derivation on next pages)

		

• Compare	this	to	Cp
U = n−1SSE[Γ ] + 2n

−1 pσ̂ r
2( )	--		

The	difference	is	the	last	term,	which	estimates	variance.		
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Derivation	
• Follows	the	pattern	for	derivation	of	Cp.	
• Uses	Δ 	method	and	weak	LLN	(or	CLT),	
• And	the	Sandwich	estimator.	
• Let	≈ 	denote	suitable	asymptotic	approximation.	
• Let	Ψ̂[Γ ]	denote	the	usual	sandwich	estimator	for	the	
covariance	matrix	of	β̂[Γ ] 	(assumption-lean	setting):	

	 Ψ̂[Γ ] = M̂[Γ ]
−1 Ŵ[Γ ]M̂[Γ ]

−1 .	
• Then	(suppressing	the	subscript	[Γ ]	for	convenience)	
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Derivation,	continued:	
	

 

R ! E Y ∗ − X∗Tβ̂( )2
= E Y ∗ − X∗Tβ( )2

+ E X∗T β̂ − β( )( )2

≈ E Y ∗ − X∗Tβ( )2
+ E X∗TΨ̂X∗ n( ) (Sandwich)

≈ n−1 Y −Xβ 2 + n−1tr Ψ̂XTX n( ) (Empirical moment)

≈ n−1 Y −Xβ̂
2
+ n−1tr Ψ̂XTX n( ) + n−1tr Ψ̂XTX n( )

= n−1 Y −Xβ̂
2
+ 2n−1tr M̂Ŵ( ) !Cp

⊕

	

	
end	of	derivation.	 	
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Asymptotic	Results	
	 Tracking	the	error	terms	in	the	preceding	derivation	
(and	being	precise	about	[benign]	assumptions	on	existence	of	moments)	
yields	–	
T1:	 Cp

⊕ 	is	asymptotically	unbiased	in	the	sense	that		
E Cp

⊕( ) = R +O 1 n( ).	
T2:	 Cp

⊕ 	has	considerable	asymptotic	variability	about	its	
mean.	To	be	precise,	
	 Cp

⊕ = R +OP 1 n( ).		
• T2	is	disappointing.	Here’s	why	
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A	Disappointment	
	

T2	Says	 	 	 	 Cp
⊕ = R +OP 1 n( ).		

• 	Cp
⊕
	can	be	written:	Cp

⊕ = n−1SSE[Γ ] + 2n
−1ς̂ [Γ ]

2 .		
• 1st	term	is	an	underestimate	of	R.	The	2nd	term	is	a	
correction	meant	to	fix	the	optimism	in	1st	term.	

• According	to	T2	the	second	term	is	asymptotically	
negligible	in	comparison	to	natural	randomness	in	Cp

⊕ .	
• Hence	if	the	goal	of	Cp

⊕ 	were	to	estimate	R,	then	the	2nd	
term	is	asymptotically	useless,	and	one	might	just	as	well	
use	n−1SSE[Γ ].	

• Analogous	comments	are	equally	true	about	Cp
U .	Hence	

(asymptotic)	unbiasedness	is	irrelevant	for	estimation	of	R.	
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Comparison	of	Sub-Models	
• In	practice,	the	use	of	Mallows’	type	measures	is	to	
compare	two	(or	more)	sub-models.	

• Let	Γ1, Γ2 	denote	two	designated	sub-models	whose	
predictive	power	is	to	be	compared	in	an	analysis.	
Then	

T3:	 	 	 R Γ2[ ] − R Γ1[ ] = C Γ2[ ]
⊕ −C Γ1[ ]

⊕ +OP 1 n( ).	
• The	stochastic	error	in	the	comparison	of	two	sub-
models	is	of	the	same	order	as	the	second	terms	in	the	
definitions	of	Cp

⊕ .	Thus	those	terms	may	improve	the	
estimate	of	comparative	predictive	risks.		

• But	they	do	not	guarantee	success.		
• Unfortunately,	nothing	can	do	so!	(T4.)		
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Cp
⊕ 	Does	Not	Guarantee	Successful	Comparisons	

not	even	asymptotically	
• Suppose	 Yi = a + ε i , ε i ∼ N 0,1( ), indep ,	
• Compare	two	models:	Γ1 :Y = β1	&	Γ2 :Y = β1 + β2X .	
• Then	Γ1	is	“correct”	and	yields	the	better	predictions.	
• BUT,	as	n→∞ 			

	
P CΓ2

⊕ <CΓ1

⊕( )→ P χ1
2 > 2( ) = 0.157

= P wrong choice( )
.	

• This	is	how	far	from	perfectly	Cp
⊕	does.	Cp	will	do	the	

same	since	this	is	the	conventional	setup.		
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Can	Cp	(or	Cp
U )	and	Cp

⊕ 	give	different	model	choices?	
	

• They	can!	But	in	well-behaved	examples	they	often	do	
not.		

• Here	are	two	moderately	well-behaved	real	data	
examples	to	illustrate	this;		

• followed	by	a	third	example,	from	a	simulation,	that	
demonstrates	a	more	extreme	case.		

	
	 	



	 23	

Example:	Prostate	Data	from	Tibshirani	(1996)	
as	discussed	previously	

Stepwise	and	All-subsets	yield	same	model	choices.	Here	is	
a	stepwise	table	comparing	results	from		Cp

U 	and	Cp
⊕.		

p	 		Cp
U 		 Cp

⊕ 		
[2]	lpsa	 0.6433	 0.6557	
[3]	lcp	 0.5076	 0.5169	
[4]	age	 0.5070	 0.5155	
[5]	lbph	 0.5031	 0.5117	
[6]	pgg45	 0.5074	 0.5114	
[7]	gleason	 0.5076	 0.5090	
[8]	svi	 0.5159	 0.5143	
[9]	lwt	 0.5259	 0.5236	

Scree	plot	---	
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	 25	

Criminal	Sentencing	
	 This	data	is	analyzed	in	WLMRG	(2015,	“Conspiracy”)	
and	McCarthy,	Zhang	&	WLMRG	(2016,	Double	bootstrap).	
Used	here	is	a	random	sample	of	size	500	from	a	much	
larger	data-set	collected	and	analyzed	by	R.	Berk.		
	 The	Y	variable	is	the	length	of	criminal	sentence.	The	
covariates	are	demographic	descriptors	of	the	sentenced	
individuals	&	their	prior	criminal	justice	experience	and	
the	type	and	severity	of	the	crime	for	which	they	are	
sentenced;	r	=	14.	Here	is	the	scree	plot	for	all	subsets	
regression,	showing	Mallows’	type	values	for	the	best	
subset	for	each	value	of	p.	 
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	 Note	the	best	subset	size	was	7	under	both	measures.	The	
subsets	were	the	same.	The	curves	are	each	fairly	horizontal.	(Note	
the	vertical	scale.).	If	operating	stepwise	one	might	decide	to	use	
p = 4 	under	Cp

⊕ 	and	 p = 5 	under	Cp	.	Cp
⊕ 	is	above	Cp,	as	is	typical	but	

not	necessary.	
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Simulation	
• In	order	to	show	what	can	happen	in	less	well-behaved	
settings	we	simulated	data	from	a	particular	joint	
distribution,	F.		

• It	was	chosen	by	trial	and	error	to	yield	interesting	results.	
See	next	page	for	a	sample	data	set.	

• The	analytical	models	to	compare	were	
Γ1 :Y = b1; Γ2 :Y = b1 + b2X .	

• [Neither	model	is	a	correct,	perfect	description	of	F.]	
• Following	is	a	scatterplot	for	a	typical	data	set,	followed	by	
other	info.	You	can	see	both	the	constant	and	linear	models	
are	mis-specified	and	there	is	strong	leverage.	

(Simulation	had	4,000	replications.)	
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Typical	scatterplot	from	simulation	

	
Note	the	possible	non-linearity	and/or	high	leverage	outlier.		
(What	do	you	think	is	the	true	distribution	that	generated	this	data?)	
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p	 Rp 		 Cp 		 Cp
⊕ 	

1	 2.84	 2.84	 2.85	
2	 3.26	 2.28	 2.72	

Table	1:	Actual	value	of	the	predictive	squared	risk	and	the	averages		
of	its	estimates.	

	

• Neither	Mallows’	type	of	estimate	does	a	good	average	
job	of	estimating	R2 .	(PS:	Simulation	error	was	nearly	
negligible.)	But	C2

⊕	does	better	on	average	than	C2.	
• The	better	model	as	between	the	two	is	p	=	1.	And/But	

C1
⊕ <C2

⊕ 	(as	hoped)	52%	of	the	time,	while	
C1	<	C2	only		25%	of	the	time.	

• SO,	as	theory	predicts,	Cp
⊕
	does	better	than	Cp	at	

comparing,	though	neither	does	sparklingly	well.	
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Take	aways:	
• For	observational	data	Mallows’	Cp	is	an	unjustified	
estimate	of	predictive	risk.	Cp

⊕ 	is	a	valid	estimate.	
• Both	have	high	noise	level	⇒	may	not	be	very	useful.	
• Even	for	estimating	Δ 	between	sub-models	Cp

⊕ 	has	a	
high	noise	to	signal	ratio	(as	does	Cp),	and	so	may	
not	give	right	answer	in	challenging	situations.		

• BUT	at	least	Ĉp
⊕ 	aims	at	the	correct	target,	even	in	

assumption-lean	settings.	Also,	it’s	almost	as	easy	to	
compute	as	Cp.	

Here’s	what	Mallows	wrote/said	about	Cp,	and	is	equally	
true	about	Ĉp

⊕ :	
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Mallows view of how Cp should – and should not – be used (1973):	
  
“The discussion above does not lend any support to the practice of 
taking the lowest point on a Cp-plot as defining a "best" subset of 
terms. The present author feels that the greatest value of the device 
is that it helps the statistician to examine some aspects of the 
structure of his data and helps him to recognize the ambiguities that 
confront him. The device cannot be expected to provide a single 
"best" equation when the data are intrinsically inadequate to 
support such a strong inference.”...  
“ ...the ambiguous cases where the "minimum Cp"  rule will give 
bad results are exactly those where a large number of subsets are 
close competitors for the honor. With such data no selection rule 
can be expected to perform reliably.” 
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	 Further	research	in	progress	reveals	non-trivial	limits	on	
the	possibility	of	correctly	identifying	better	and/or	best	
models.	It	turns	out	that	Cp,	when	applicable,	and	Cp

⊕	more	
generally	provide	a	(nearly)	optimal	statistic	for	such	purposes	
if	used	properly. 
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Take-aways (cont.) 
• As Andreas Buja likes to express this idea: 

“Look	at	the	Scree	plot.	It	will	typically	fall	steeply,	sort	of	level	
out,	and	then	may	gradually	rise.	Keep	the	variables	for	which	
the	plot	is	falling	steeply,	throw	out	all	those	after	the	plot	has	
noticeably	risen,	and	do	what	you	want	with	the	variables	in	
between.	For	a	parsimonious	and	usually	satisfactory	model	
throw	out	all	the	variables	after	the	steep	fall.”	
	
P.S.:	It	is	possible	to	pursue	further	distribution	theory	about	Cp	
and	Cp

⊕		to	provide	a	statistical	quantification	as	to	what	
“steeply”	and	“noticeably”	mean.	We	know	how	to	do	this	for	Cp.	
We’re	still	working	on	this	for	Cp

⊕,	and	to	improve	results	for	Cp.		
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end	

	
	 Parenthetical	note:	General	“conspiracy”	theory	suggests	that	if	the	
covariates	are	random	but	the	linear	model	is	first	and	second	order	well-
specified	then	fixed	X	analysis	is	correct.	However	that’s	not	necessarily	true	
with	respect	to	the	Cp	goal	of	estimating	predictive	risk	when	using	sub-
models.	Even	for	such	a	case	one	should	use		Cp

⊕ 	or	analogous	measure.	The	
reason	is	that	the	sub-model	need	not	be	well-specified.	Thus,	even	though	

	
E Y X( )	is	linear	in	the	vector	X	it	need	not	be	the	case	that			E Y X[p]( ) 	is	linear	
in	the	reduced	model	vector			X[p].		 	
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PS	in	the	final	simulation	
• The	data	are	from	

 X ∼ exp(1)−1, Y = b1 + b2X + b3X
3 + Z ,	n=100.	

b1 = b2 = b3 = 0.1	(This	choice	gave	interesting	results.)	
		


